CSE 1325 – Spring 2014
Object-Oriented and Event-driven Programming in Java
Lab 4

Design Document Due Date: Tuesday, May 6, 2014 at 11:59pm -- This is during finals week
 (one minute before midnight 12am)
Lab Due Date: Thursday, May 8, 2014 at 11:59pm -- This is during finals week
(see instructions on website for how to turn this in - “lab submission info”)
Extra Credit for Early Submission:
	All required elements of Lab #4 submitted by Sunday, May 4, 2014 at 11:59pm : 20 points extra credit
All required elements of Lab #4 submitted by Monday, May 5, 2014 at 11:59pm : 15 points extra credit
All required elements of Lab #4 submitted by Tuesday, May 6, 2014 at 11:59pm : 10 points extra credit
All required elements of Lab #4 submitted by Wednesday, May 7, 2014 at 11:59pm : 5 points extra credit
NO LATE LABS ACCEPTED for Lab #4.

Grade value: 11% out of 100% for all grades (original value)
Revised grade values for labs: 	Lab #1 – 5% out of 100%
					Lab #2 – 11% out of 100%
					Lab #3 – 15% out of 100%
					Lab #4 – 15% out of 100%

Objective:
The theme of this project is to design classes and methods for managing a community theater (plays, directors, actors, attendees) using object-oriented design (OOD) principles. This project builds on the previous labs as will the rest of the projects in the semester. Please make sure you adhere to OO principles throughout the design and implementation. The projects are designed to give you an opportunity to exercise the principles taught in the course. Remember, Java is only a vehicle for supporting OOD. Make sure you fully leverage the features available in Java for your benefit as long as we’ve touched on them in class. Ask before jumping into totally new concepts for your lab.

In this project, you will be designing the data abstractions and required operations on those abstractions for managing a community theater.

Be sure to check the DEDUCTIONS section at the end of this assignment to avoid penalties

You are also required to design your program in advance before you begin writing code. You will document your design and turn in the design document at least a week before the lab assignment is due. The goal of the design document is to assist you in developing the actual program. Note SHORTER time between design and lab due dates.

Description:
Design classes, fields (attributes) and methods for the problem description below. Make sure you understand and differentiate between public and private (and optionally protected) fields and methods. Use static fields/methods where appropriate. Make sure each class has at least one constructor (more as needed) with arguments. Each class should have appropriate get (accessor) and set (mutator) methods. Each class should have a toString method (and other formatting methods as needed).

Use a “test” class to run the application (to test/call each method defined in classes). The test class should ask for and accept user input, print the following menu, and execute the menu to provide understandable output. All inputs (as appropriate for the menu) should be accepted from the user as specified (files, GUIs, or keyboard input) and should prompt for the input with appropriate messages. If bounds are appropriate, please indicate it in the prompt and check for input errors. Test your source code—be sure every method works correctly.

For Lab #4 you will see additional requirements below

Test class main routine should check all of the following. This means that each element below is considered a test case for your classes:
1) Sell tickets to attendees for a specific seat at a specific showing of a play
2) Rent items for the play
3) Hire an actor or director – add them to the payroll.
4) Pay an actor/director - see details below for payment methods
5) Remove (fire) an actor /director
6) Display all actor/director details
7) Display all attendee details (including name, date to attend, seats)
8) Display all play details (all shows, all actors and directors)
9) Display all show details (date, day, and time, all seats (box and regular), tickets sold)
10) Display current theatre finances (current ticket sales and payroll for the next month)
11) Hire a theatre staff member or theatre manager
12) Pay a theatre staff member / manager
13) Remove a theatre staff member / manager
14) Have an investor support a play at the theatre (put money in the theatre bank acct)
15) Modify values for hourly pay and hours worked for all persons
16) Modify ticket prices for a specific show
17) Display a bank account for any person or the theater or the rental company
18) For any action which adds/hires a person, use a person GUI with a menu to select person type, buttons for any boolean values, limited possible inputs
	for numeric day values, month values selected from a list of month names and then panels which capture other data for the appropriate type of
	person being added (ex. the Actor panel would include a place to enter the role but the Director panel would include the percentage of the house
that they receive.) This applies to actions 3 and 11 above and applies to any other persons (attendees and investors) if they can be added.
0) Exit program

A. The Theater class should contain the following data and methods:
Data members:
1. Has a name
2. Has a current play showing on multiple dates and days (has list of multiple shows)
3. Has different prices for different show days
3.a. Friday and Saturday night price
3.b. Saturday and Sunday matinee price (a percentage of the Fri/Sat night price)
3.c. Sunday night price (a different percentage of the Fri/Sat night price)
4. Has a number of seats in the theatre
 4.a. Number of regular seats
 4.b. Number of box seats
5. Has a maximum yearly operating budget
6. Keep track of rented items for show (using a collection class)
7. Has a bank account for its operating budget
8. Has a list of staff and a payroll

Methods:
a. Sells tickets to a show
b. Accepts payments from attendees
c. Keeps track of how many tickets have been sold
d. Refunds ticket payments
e. Keeps track of sales of tickets as a monetary total
f. Pays employees (theatre staff, manager, actors, director)
g. Hires and fires employees
h. Keeps track of how many actors/directors are currently working on a given play
i. Pays actors/directors at the end of each week, adjusting the operating budget as necessary
j. Pays theatre staff and manager at end of each month, adjusting the operating budget as necessary
k. Displays all plays, actors, attendees, etc. in a tabular formatted manner

B. The Play class has the following features EXAMPLE
1. Title Cabaret
2. Author Jay Allen
3. Year published 1972
4. Opening date March 31, 2014
5. World premier boolean
6. Play usage rental $8400.00
7. End date April 15, 2014
(Use Java Date class from java.util.Date)
8. Total number of shows 11
9. List of actors
10. Director

The Show class has
1. Date (day, month, year)
2. Day of the week
3. Time of the show (night or matinee or special)
4. Has a number of seats per show
 4.a. Regular seat cost (based on show day price)
 4.b. Box seat ticket cost (a percentage over the show day price)
5. Has a list of tickets sold (one ticket per seat)
6. The play being shown

C. The Person class has the following attributes EXAMPLE
1. First name Jaya
2. Last name Smith
3. Identification number 006
4. Address 123 Sesame St., NY, NY 10001
5. Birthdate July 4, 1963
6. Hire date November 1, 2012
7. Bank account from BankAccount class

The Actor class has the following attributes EXAMPLE
Inherits data fields from person class
5. Hired for which play Cabaret
6. Pay scale per hour $12.00
7. Actor's Equity? boolean
8. Role Character name
9. Hours worked per week 15

The method for CalculatePay for an actor is to pass in the pay scale per hour, the hours worked for week, and a 1 if the Actor's Equity boolean is true or 0 if false. The pay is then calculated one of two ways based on the boolean value.
If the Actor's Equity boolean was false then the
actor's pay equals pay per hour * hours per week
If the Actor's Equity boolean was true then the pay calculation is:
actor's pay equals pay per hour * hours per week PLUS
 the greater of ((hours per week – 40) * pay per hour) OR 0 (zero)
[Basically, there is extra pay for over 40 hours a week if the actor is part of Equity]

The Director class has the following attributes EXAMPLE
Inherits data fields from person class
5. Hired for which play Cabaret
6. Pay scale per hour $30.00
7. Actor's Equity? boolean
8. Up front fee $450.00
9. Percentage of house 15%
10. Hours worked per week 50

The method for CalculatePay for a director is to pass in the up front fee, the pay scale per hour, and a 1 if the Actor's Equity boolean is true or 0 if false. The pay is then calculated one of two ways based on the boolean value.
If the Actor's Equity boolean was false then the
actor's pay equals up front fee
If the Actor's Equity boolean was true then the pay calculation is:
actor's pay equals up front fee PLUS
 the greater of ((hours per week – 40) * pay per hour) OR 0 (zero)
[There is extra pay for over 40 hours a week if the director is part of Equity]

Directors will also have a method for PerformancePay which will be based on the total ticket sales for all shows taking the gross revenue for ticket sales and determining 15% of the gross revenue. This percentage of the house is the pay the director receives for the complete run of the play and all performances.

The Attendee class has the following attributes EXAMPLE
Inherits data fields from person class
5. Attending which play Cabaret
6. Ticket price category $20.00
7.Number of tickets integer
8. Date of tickets March 19, 2014
9. Which show? (Eve or matinee) (use an enum here)

The theater Staff member class has the following attributes
Inherits data fields from person class
5. Work position USHER (enum with TICKETSELLER, CONCESSIONS)
6. Pay scale per hour $8.25
7. Hours worked per week 22
8. Days worked each week THURSDAY, SATURDAY (enum type of all days)
9. Number of weeks worked this month 4.5 (one extra Thursday worked)

The method for CalculatePay for a theater staff member is to pass in the pay scale per hour, the hours worked for week, and a number of weeks worked in the current month. The theatre staff member's pay monthly pay is :
pay per hour * hours per week * weeks worked in current month

The theater Manager class has the following attributes
Inherits data fields from person class
5. Number of staff members 14
6. Weekly pay rate $800.00
7. Vacation weeks taken in month 1 (this will often be 0)
8. Days worked each week THURSDAY, FRIDAY, SUNDAY (enum type of all days)
9. Total weeks in this month 4.5 (indicates 31 days in month)

The method for CalculatePay for a theater manger is to pass in the weekly pay rate, the number of vacation weeks taken in the month and the total number of weeks in the current month. The manager pay is then :
 weekly pay rate * (total weeks in month – vacation weeks taken in month)

The Investor class has the following attributes
Inherits data fields from person class
5. Amount invested double
6. Tickets received int
7. Percentage of house percentage

D. Interface for CalculatePay as
double CalculatePay(double Amt1, double Amt2, double Amt3);

E. Class for BankAccount has the following attributes:
1. Current total double
2. List of last three payment transactions made
3. List of last three deposit transactions received
4. Receiving direct deposit? Boolean
5. Account number

Class for AccountTransaction
1. Payee object of Theater or Person class
2. Payer object of Theater or Person class
3. Amount double
4. Reason String "ticket sale", "weekly pay", etc.

Program Requirements
For Lab #4 you should
1) define classes for all the described elements above,
2) use inheritance to create at least three of the classes,
3) use Bank Account and AccountTransaction to handle money transactions,
4) create a ticket class which includes a price, a date, time, and seat number
5) keep data members private unless otherwise instructed
6) create get and set methods for all private data members
7) create toString and/or display methods for all classes (other than the test class)
8) create constructors and initialize objects as needed
9) read initial data in from a input file (using a Scanner object connected to the file)
10) output information to the user in GUI windows
11) Use Javadoc commands to comment your code and generate the Javadoc documentation to submit with the assignment
12) use a GUI as described earlier to enter new person data
13) demonstrate changes in bank accounts after various transactions
14) use the input data files WITHOUT removing comments – this means your code must handle comment markers.

Java provides mechanisms for comments and input for Javadoc. Please make sure your code contains both. Also, submit the files generated by the Javadoc for your program. Look up the convention for specifying parameters (@param) and user information for javadoc. Every method should have its meaningful description for use by someone else. Use the relevant Javadoc tags specified in -http://en.wikipedia.org/wiki/Javadoc or http://java.sun.com/j2se/javadoc/writingdoccomments/

Standard Java conventions and coding style:
Be sure to observe standard Java naming conventions and style. These will be observed across all projects for this course, hence it is necessary that you understand and follow them correctly. They include:
 Class names begin with an upper-case letter, as do any subsequent words in the class name.
 Method names begin with a lower-case letter, and any subsequent words in the method name begin with an upper-case letter. This is called "camelCase".
 Class, instance and local variables begin with a lower-case letter, and any subsequent words in the name of that variable begin with an upper-case letter.
 Each set of opening/closing curly braces must be in the same column.
 All user prompts must be clear and understandable
 Give meaningful names for classes, methods, and variables even if they seem to be long. The point is that the names should be easy to understand for a person looking at your code
 All static final variables will be upper case identifiers (i.e.constants)
 One class per file

In addition, ensure that your code is properly documented in terms of comments and other forms of documentation wherever necessary.

What and How to Submit
For Lab #4 WRITE A JAVADOC DESIGN DOCUMENT FIRST. The design must be written as Javadoc code giving:

 a) all the classes you expect to write,

 b) brief (one line) descriptions of each data member of the class

 c) brief (one line) descriptions of each method (member function) of the class, and

 d) some indication of the relationships between the classes.

The design document must be written using Javadoc notation. This design document will be the documentation incorporated into the lab assignment.

Each class should encapsulate one thing and each piece of data at a lower level should have a more specific purpose than the class that owns it. Be sure to include all the classes that are described in this lab assignment.

See the website or this assignment for the DESIGN DOCUMENT due date. It is usually ONE WEEK PRIOR to the lab due date.

A Lab #4 Design Document must be turned in in order for your Lab #4 assignment to be graded.

For this lab project itself, please submit the following material using the Blackboard system at elearn.uta.edu. Please submit ONE .zip file that contains:
 Each .java file used in development with the appropriate name for the included class
 A document, called your "test plan", listing each test case that is in your test class and what the purpose is of each test (Note that the grading rubric requires at least two tests per each of the required 17(or 18) functions above)
 The Javadoc design document from your program
 A development notes file (standard text or word file) that describes at least one error that you found while developing your code, how you solved it, and the total amount of time you spent on this project in terms of hours.

The .zip file containing your project must have the name format of: proj4_1000number_firstname_lastname
Upload this code to Blackboard at elearn.uta.edu

A Few Helpful Tips:
 Netbeans by default recompiles your class every time you save your file. If you want to force everything to be recompiled, press the ‘clean and build’ button.
 Ctrl + space in most IDE’s will show a list of available members (or variables) and methods (or functions).

Grading Rubric:
Code: (35%)
 Headers, comments, style and modularity (15 points)
 This must be done with Javadoc for Lab #4. Class header and method headers for all classes, Comments (line comments and block comments), Style (following Java conventions, indentation, consistency, meaningful identifiers, lateral separation of code from line comments, etc.), Modularity (division of the problem into small parts)
 Correct declaration of the required classes with data and methods and any other needed classes including all modifications and new classes (5 points)
 Correct interface definition (7points)
 Test plan includes at least two tests for each of the required
 17 (or 18) functions and uses the
 display functions to verify test reults (8 points)

Output: (65%)
 GUI input works correctly (10 pts)
 File input works correctly with comments in file (7 pts)

 User clearly understands what is being requested for input (3 points)
[bookmark: _GoBack] All required tasks perform correctly including new tasks (8 points)

 Get , Set, toString functions and interfaces implemented correctly (8 pts)

 Graphical user interfaces implemented as required for output (5 pts)
 Javadoc elements demonstrate design and work correctly (5 points)
 Output gives clear information to explain the values to the user (3 points)
 Output contains at least three data sets, (9 points)
 Output demonstrates all elements of test plan (7 points)

Grading Deductions:
 Labs which do not compile in NetBeans will receive an overall grade of 0 (zero) [-100 deduction]
 Labs which have errors in them and do not terminate normally in NetBeans will receive an overall grade of 0 (zero) [-100 deduction]
 Late submission of softcopy of design document, code and/or other documents to Blackboard will result in an overall grade of 0 (zero) UNLESS student has obtained prior instructor approval [-100 deduction]
 Use of Java language elements not yet discussed in class by the lab due date will result in potential deduction of points - discuss with instructor before using.
 Use of Java public variables (C equivalent to global variables) will result in an overall grade of 0 (zero) [-100 deduction]
 Use of unstructured control elements, like the break (except in the case of switch statements), continue, or exit keywords, will result in an overall grade of 0 (zero) [-100 deduction]

Miscellaneous: If you have questions, e-mail Dr. T (tiernan@uta.edu) and the TA.

58 1525 -spring 2014
ObjectOriented and Evntdriven rogrammi
Labs.

Dssin Dot D et Tudiy, W 6 201434119 - This b o

(e minte betre g 20m)
Labpueome ooy, Wiy o Sy T b gt
—

e ——
B o o
i s L 4 by S Moy 4214 1159 20
i domemt o 4 it by e oy 0115 5
i dos o M bty Ty Mg 01115710
reaard dmersof L 4 bty Wy Moy 7,204 15
[ty ——

ot s i)

e e, 1% ut 100K grades g
Bt st LR S o 100%

Obectve:
e —
B e e st i) g oo e s 00 s
el e e e o e e e e
e e LA 00 b o hoc e et o
T e s 1 o U o e e s g
Bt emen o v Ch e o s 800 Moty
P e e

bt e e the st nd e s .
o o g e e

N —

Yooyt s o s e efor e e
o eyt stk e e ot i ek

